Measure theory and stochastic processes TA Session Problems No. 5

Agnieszka Borowska

08.10.2014

Note: this is only a draft of the solutions discussed on Wednesday and might contain some typos or more or less imprecise statements. If you find some, please let me know.

Ex. 4.1 (Shreve)

Suppose M(t), $0 \le t \le T$ is a martingale with respect to some filtration $\mathcal{F}(t)$, $0 \le t \le T$. Let $\Delta(t)$, $0 \le t \le T$, be a simple process adapted to $\mathcal{F}(t)$ (i.e., there is a partition $\Pi = \{t_0, t_1, \ldots, t_n\}$ of [0, T] such that, for every j, $\Delta(t_j)$ is $\mathcal{F}(t_j)$ -measurable and $\Delta(t)$ is constant in t on each subinterval $[t_j, t_{j+1})$. For $t \in [t_k, t_{t+1})$, define the stochastic integral

$$I(t) = \sum_{j=0}^{k-1} \Delta(t_j) \left[M(t_{j+1}) - M(t_j) \right] + \Delta(t_k) \left[M(t) - M(t_k) \right]. \tag{1}$$

We think of M(t) as the price of an asset at time t and $\Delta(t_j)$ as the number of shares of the asset held by an investor between times t_j and t_{j+1} . Then I(t) is the capital gains that accrue to the investor between times 0 and t. Show that I(t), $0 \le t \le T$, is a martingale.

First, recall the definition of a martingale.

Def 2.3.5(i). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let T be a fixed positive number, and let $\mathcal{F}(t)$, $0 \le t \le T$, be a filtration of sub- σ -algebras of \mathcal{F} . Consider an adapted stochastic process M(t), $0 \le t \le T$. If

$$\mathbb{E}[M(t)|\mathcal{F}(s)] = M(s)$$
, for all $0 \le s \le t \le T$,

we say this process is a martingale. It has no tendency to rise or fall.

Next, recall two important notions. Below we let $\Pi = \{t_0, t_1, \dots, t_n\}$ be a partition of [0, T], where T > 0 is fixed, i.e. $0 = t_0 \le t_1 \le \dots \le t_n = T$.

A simple process $\Delta(t)$ is an adapted stochastic process, which is constant in t on each subinterval $[t_j, t_{j+1})$.

The Itô integral of a simple process $\Delta(t)$ is is a stochastic process given by

$$I(t) = \sum_{j=0}^{k-1} \Delta(t_j) \left[W(t_{j+1}) - W(t_j) \right] + \Delta(t_k) \left[W(t) - W(t_k) \right], \tag{4.2.2}$$

where $t_k \leq t \leq t_{k+1}$, which is denoted as

$$I(t) = \int_0^t \Delta(u) dW(u).$$

Finally, recall that the Itô integral is a martingale.

Thm. 4.3.1. The Itô integral defined by (4.2.2) is a martingale.

Let $0 \le s \le t \le T$ and wlog¹ assume $s = t_l$ and $t = t_k$, for some l, k. We need to check what the expectations of I(t) (1) given $\mathcal{F}(s)$ is. We have

$$\begin{split} \mathbb{E}\left[I(t)|\mathcal{F}(s)\right] &= \mathbb{E}\left[I(t_{k})|\mathcal{F}(t_{l})\right] \\ &= \mathbb{E}\left[\sum_{j=0}^{k-1} \Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] \middle| \mathcal{F}(t_{l})\right] \\ &= \mathbb{E}\left[\sum_{j=0}^{l-1} \Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] + \sum_{j=l}^{k-1} \Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] \middle| \mathcal{F}(t_{l})\right] \\ &\stackrel{\text{lin.}}{=} \sum_{j=0}^{l-1} \mathbb{E}\left[\Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] \middle| \mathcal{F}(t_{l})\right] + \sum_{j=l}^{k-1} \mathbb{E}\left[\Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] \middle| \mathcal{F}(t_{l})\right] \\ &\stackrel{\text{measur.}}{=} \sum_{j=0}^{l-1} \Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] + \sum_{j=l}^{k-1} \mathbb{E}\left[\mathbb{E}\left[\Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] \middle| \mathcal{F}(t_{l})\right] \right] \\ &= I(s) + \sum_{j=l}^{k-1} \mathbb{E}\left[\mathbb{E}\left[\Delta(t_{j}) \left[M(t_{j+1}) - M(t_{j})\right] \middle| \mathcal{F}(t_{l})\right] \right] \\ &= I(s) + \sum_{j=l}^{k-1} \mathbb{E}\left[0|\mathcal{F}(t_{l})\right] \\ &= I(s) + 0 \\ &= I(s), \end{split}$$

where IC denotes iterated conditioning², which shows that I(t) is a martingale.

Notice that the "trick" with iterated conditioning allowed us to make use of the martigale property of the process M, i.e. we could write that

$$\mathbb{E}\left[\Delta(t_j)\left[M(t_{j+1}) - M(t_j)\right] \middle| \mathcal{F}(t_j)\right] = \Delta(t_j)\mathbb{E}\left[M(t_{j+1})\middle| \mathcal{F}(t_j)\right] - \Delta(t_j)M(t_j)$$
$$= \Delta(t_j)M(t_j) - \Delta(t_j)M(t_j)$$
$$= 0.$$

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{G}\right]|\mathcal{H}\right] = \mathbb{E}\left[X|\mathcal{H}\right]. \tag{2.3.20}$$

¹Without loss of generality. Indeed, as we can always take a new partition of [0, T] with re-arranged indices.

 $^{^2}$ Cf. Thm. 2.3.2(iii): If $\mathcal H$ is a sub- σ -algebra of $\mathcal G$ ($\mathcal H$ contains less information than $\mathcal G$) and X is an integrable random variable, then

Before moving to the next exercesie, let us go through a short recap on convergence and general Itô integrals.

First, recall the definition of **convergence in the** *p***-th moment.**

Def. Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variables and X be a random variable defined on the same probability space. We say that $(X_n)_{n=1}^{\infty}$ converges to X in the p-th moment (in L^p), $0 , if <math>\mathbb{E}|X|^p < \infty$, $\mathbb{E}|X_n|^p < \infty$, $\forall n$, and

$$\lim_{n \to \infty} \mathbb{E}[X_n - X]^p = 0,$$

and we denote this by $X_n \stackrel{L^p}{\to} X$.

Second, recall the **Itô isometry** property of the Itô integral (4.2.2).

Thm. 4.2.2. The Itô integral defined by (4.2.2) satisfies

$$\mathbb{E}I^{2}(t) = \mathbb{E}\int_{0}^{t} \Delta^{2}(u)du. \tag{4.2.6.}$$

Formula (4.2.6.) allows us to compute $VarI(t) = \mathbb{E}I^2(t)$, where the latter equality follows from the fact that $\mathbb{E}I(t) = 0, \forall t \geq 0$.

Next, for a general integrand, being an adapted stochastic process $\Delta(t)$, its Itô integral is constructed by approximating $\Delta(t)$ by simple processes $\Delta_n(t)$. The latter are chosen in such a way that they *converge* to the continuously varying $\Delta(t)$, which means that

$$\lim_{t \to \infty} \mathbb{E} \int_0^T |\Delta_n(t) - \Delta(t)|^2 dt = 0. \tag{4.3.2}$$

More formaly, the Itô integral for the continuously varying integrand $\Delta(t)$ is defined by the formula

$$I(t) = \int_0^t \Delta(u)dW(u) := \lim_{n \to \infty} \int_0^t \Delta_n(u)dW(u), \qquad 0 \le t \le T.$$

$$(4.3.3)$$

For each t, the limit in (4.3.3) exists because $I_n(t) = \int_0^t \Delta_n(u) dW(u)$ is a Cauchy sequence in $L^2(\Omega, \mathcal{F}, \mathbb{P})^3$. This is because of Itô's isometry (Thm. 4.2.2), which yields

$$\mathbb{E}\left(I_n(t) - I_m(t)\right)^2 = \mathbb{E}\int_0^t \left|\Delta_n(u) - \Delta_m(u)\right|^2 du.$$

As a consequence of (4.3.2), the right-hand side has limit zero as n and m approach infinity.

Finally, recall the **properties of the Itô integral**.

Thm. 4.3.1. Let T be a positive constant and let $\Delta(t)$, $0 \le t \le T$, be an adapted stochastic process that satisfies

$$\mathbb{E} \int_0^T \Delta^2(t)dt < \infty. \tag{4.3.1}$$

Then $I(t) = \int_0^t \Delta(u)dW(u)$ defined by (4.3.3) has the following properties.

- (a) (Continuity) As a function of the upper limit of integration t, the paths of I(t) are continuous.
- (b) (Adaptivity) For each t, I(t) is $\mathcal{F}(t)$ -measurable.
- (c) (Linearity) If $I(t) = \int_0^t \Delta(u)dW(u)$ and $J(t) = \int_0^t \Gamma(u)dW(u)$, then $I(t)\pm J(t) = \int_0^t (\Delta(u)\pm\Gamma(u))\,dW(u)$; furthermore, for every constant c, $cI(t) = \int_0^t c\Delta(u)dW(u)$.
- (d) (Martingale) I(t) is a martingale.
- (e) (Itô isometry) $\mathbb{E}I^2(t) = \mathbb{E}\int_0^t \Delta^2(u)du$.
- (f) (Quadratic variation) $[I, I](t) = \int_0^t \Delta^2(u) du$.

³For $0 \le \infty$, the L^p spaces are *complete* (when equipped with an appropriate norm).

Ex. 4.4 (Shreve) (Stratonovich integral)

Let W(t), $t \ge 0$, be a Brownian motion. Let T be a fixed positive number and let $\Pi = \{t_0, t_1, \ldots, t_n\}$ be a partition of [0,T] (i.e., $0 = t_0 < t_1 < \cdots < t_n = T$). For each j, define $t_j^* = \frac{t_j + t_{j+1}}{2}$ to be the midpoint of the interval $[t_j, t_{j+1}]$.

(i) Define the half-sample quadratic variation corresponding to Π to be

$$Q_{\Pi/2} = \sum_{j=0}^{n-1} (W(t_j^*) - W(t_j))^2.$$

Show that $Q_{\Pi/2}$ has limit $\frac{1}{2}T$ as $||\Pi|| \to 0$. (Hint: It suffices to show that $\mathbb{E}Q_{\Pi/2} = \frac{1}{2}T$ and $\lim_{||\Pi|| \to 0} Var(Q_{\Pi/2}) = 0$.)

In this exercise we will consider convergence in L^2 , since the Stratonovich integral is defined as the limit in L^2 (similarly to the Itô integral).

Using the hint we can start with computing the expected value of the half-sample quadratic variation under consideration. We have

$$\mathbb{E}(Q_{\Pi/2}) = \mathbb{E}\left[\sum_{j=0}^{n-1} \left(W(t_j^*) - W(t_j)\right)^2\right]$$

$$= \sum_{j=0}^{n-1} \mathbb{E}\left[\left(W(t_j^*) - W(t_j)\right)^2\right]$$

$$\stackrel{(*)}{=} \sum_{j=0}^{n-1} \left(t_j^* - t_j\right)$$

$$= \sum_{j=0}^{n-1} \left(\frac{t_j + t_{j+1}}{2} - t_j\right)$$

$$= \sum_{j=0}^{n-1} \frac{t_{j+1} - t_j}{2}$$

$$= \frac{T}{2},$$

where in (*) we use the fact that for $0 \le s \le t$ the increment of the Brownian motion $W(t) - W(s) \sim N(0, t - s)$. Notice that in the last step we used the following equality (we will use it in the next point)

$$\frac{T}{2} = \sum_{j=0}^{n-1} \frac{t_{j+1} - t_j}{2}.$$

Next, for the variance we have

$$\begin{split} \operatorname{Var}(Q_{\Pi/2}) = & \mathbb{E}\left[\left(\sum_{j=0}^{n-1} \left(W(t_j^*) - W(t_j)\right)^2 - \frac{T}{2}\right)^2\right] \\ = & \mathbb{E}\left[\left(\sum_{j=0}^{n-1} \left(W(t_j^*) - W(t_j)\right)^2 - \sum_{j=0}^{n-1} \frac{t_{j+1} - t_j}{2}\right)^2\right] \\ = & \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \mathbb{E}\left[\left(\left(W(t_j^*) - W(t_j)\right)^2 - \frac{t_{j+1} - t_j}{2}\right)\left(\left(W(t_k^*) - W(t_k)\right)^2 - \frac{t_{k+1} - t_k}{2}\right)\right] \\ = & \sum_{j=0}^{n-1} \mathbb{E}\left[\left(W(\tilde{t}_j)^2 - \frac{t_{j+1} - t_j}{2}\right)^2\right] \\ \stackrel{(**)}{=} & \sum_{j=0}^{n-1} 2 \cdot \left(\frac{t_{j+1} - t_j}{2}\right)^2 \\ \leq & \frac{T}{2} \max_{1 \leq j \leq n} |t_{j+1} - t_j| \\ \to 0, \end{split}$$

where $\tilde{t}_j = \frac{t_{j+1} - t_j}{2}$ and (**) is because of

$$\mathbb{E}\left[(W^{2}(t) - t)^{2} \right] = \mathbb{E}\left[W^{4}(t) - 2tW^{2}(t) + t^{2} \right]$$
$$= \mathbb{E}\left[W^{2}(t) \right]^{2} - 2t^{2} + t^{2}$$
$$= 2t^{2}.$$

Hence, indeed, $\mathbb{E}Q_{\Pi/2} = \frac{T}{2}$ and $\lim_{||\Pi|| \to 0} \text{Var}(Q_{\Pi/2}) = 0$, so that

$$\lim_{||\Pi|| \to 0} Q_{\Pi/2} = \frac{T}{2},$$

which is the required result.

(ii) Define the Stratonovich integral of W(t) with respect to W(t) to be

$$\int_0^T W(t) \circ dW(t) = \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} W(t_j^*) \left(W(t_{j+1}) - W(t_j) \right). \tag{4.10.1}$$

In contrast to the Itô integral $\int_0^T W(t)dW(t) = \frac{1}{2}W^2(T) - \frac{1}{2}T$ of (4.3.4), which evaluates the integrand at the left endpoint of each subinterval $[t_j, t_{j+1}]$, here we evaluate the integrand at the midpoint t_j^* . Show that

$$\int_0^T W(t) \circ dW(t) = \frac{1}{2}W^2(T).$$

(Hint: Write the approximating sum in (4.10.1) as the sum of an approximating sum for the Itô integral $\int_0^T W(t)dW(t)$ and $Q_{\Pi/2}$. The approximating sum for the Itô integral is the one corresponding to the partition $0 = t_0 < t_0^* < t_1 < t_1^* < \dots < t_{n-1}^* < t_n = T$, not the partition Π .)

First, notice that

$$a(b-c) = [a(b-a) + c(a-c)] + (a-c)^{2},$$

so that we can express the term under the limit in (4.10.1) as

$$\sum_{j=0}^{n-1} W(t_j^*) \left(W(t_{j+1}) - W(t_j) \right)$$

$$= \underbrace{\sum_{j=0}^{n-1} \left[W(t_j^*) \left(W(t_{j+1}) - W(t_j^*) \right) + W(t_j) \left(W(t_j^*) - W(t_j) \right) \right]}_{\stackrel{L^2}{\longrightarrow} \int_0^T W_t dW_t} + \underbrace{\sum_{j=0}^{n-1} \left(W(t_j^*) - W(t_j) \right)^2}_{=Q_{\Pi/2}}.$$

Hence, the partial sum which converges in L^2 to the Stratonovich integral can be expresses as a sum of two terms. The first of them converges in L^2 to $\int_0^T W(t)dW(t)$, i.e. the Itô integral of the Brownian motion, which we know⁴ is equal to

$$\int_{0}^{T} W(t)dW(t) = \frac{W^{2}(T)}{2} - \frac{T}{2}.$$

This is because this term boils down to a sum over a finer partition Π^* , with 2n elements, created by augmenting the old partition Π by putting t_i^* 's between each t_j and t_{j+1} , i.e.

$$\Pi^* = \{0 = t_0, t_0^*, t_1, t_1^*, \dots, t_{n-1}, t_{n-1}^*, t_n = T\},\$$

so that

$$\sum_{j=0}^{n-1} \left[W(t_j^*) \left(W(t_{j+1}) - W(t_j^*) \right) + W(t_j) \left(W(t_j^*) - W(t_j) \right) \right] = \sum_{k=0}^{2n-1} W(t_k) \left(W(t_{k+1}) - W(t_k) \right), \quad (2)$$

where

$$t_k = \begin{cases} t_j, \ j = \frac{k}{2} & \text{if } 2 \mid k, \\ t_j^*, \ j = \frac{k-1}{2}, & \text{if } 2 \not \mid k. \end{cases}$$

with the RHS in (2) is indeed the term under the limit in the Itô integral of the Brownian motion.

The second term is the half-sample quadratic variation we considered in previous point, so we already know that in the limit it goes to $\frac{T}{2}$.

Summing up, we can state that

$$\sum_{j=0}^{n-1} W(t_j^*) \left(W(t_{j+1}) - W(t_j) \right)$$

$$\stackrel{L^2}{\to} \int_0^T W(t) dW(t) + \frac{T}{2}$$

$$= \frac{W^2(T)}{2} - \frac{T}{2} + \frac{T}{2},$$

$$= \frac{W^2(T)}{2},$$

which completes the proof.

⁴Cf. (4.3.6) in Ex. 4.3.2. in Shreve.